Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Cereb Blood Flow Metab ; 44(2): 310-312, 2024 02.
Article in English | MEDLINE | ID: mdl-37898106

ABSTRACT

Rapid and selective therapeutic hypothermia is a promising neuroprotective method for acute ischemic stroke. A recent study developed a simple but efficient technique of transnasal cooling, in which air at ambient temperature was passed through standard nasal cannula to induce evaporative cooling of the brain. Selective brain temperature decrease was achieved within 25 minutes in piglets. It is a major step forward to initiate early brain cooling. However, it is still necessary to devise a more comprehensive strategy to enhance the benefits of selective brain cooling in the era of effective reperfusion.


Subject(s)
Brain Ischemia , Hypothermia, Induced , Hypothermia , Ischemic Stroke , Stroke , Swine , Animals , Hypothermia/drug therapy , Ischemic Stroke/therapy , Brain/blood supply , Hypothermia, Induced/methods , Stroke/drug therapy
2.
Sci Bull (Beijing) ; 68(14): 1556-1566, 2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37391345

ABSTRACT

Over decades, nearly all attempts to translate the benefits of therapeutic hypothermia in stroke models of lower-order species to stroke patients have failed. Potentially overlooked reasons may be biological gaps between different species and the mismatched initiation of therapeutic hypothermia in translational studies. Here, we introduce a novel strategy of selective therapeutic hypothermia in a non-human primate ischemia-reperfusion model, in which autologous blood was cooled ex vivo and the cool blood transfusion was administered at the middle cerebral artery just after the onset of reperfusion. Cold autologous blood cooled the targeted brain rapidly to below 34 °C while the rectal temperature remained around 36 °C with the assistance of a heat blanket during a 2-h hypothermic process. Therapeutic hypothermia or extracorporeal-circulation related complications were not observed. Cold autologous blood treatment reduced infarct sizes, preserved white matter integrity, and improved functional outcomes. Together, our results suggest that therapeutic hypothermia, induced by cold autologous blood transfusion, was achieved in a feasible, swift, and safe way in a non-human primate model of stroke. More importantly, this novel hypothermic approach conferred neuroprotection in a clinically relevant model of ischemic stroke due to reduced brain damage and improved neurofunction. This study reveals an underappreciated potential for this novel hypothermic modality for acute ischemic stroke in the era of effective reperfusion.

3.
Front Neurosci ; 17: 1143718, 2023.
Article in English | MEDLINE | ID: mdl-36845444

ABSTRACT

Background: The causality between plasma branched-chain amino acids (BCAAs) levels and stroke remains uncertain and the stratified research on the association between BCAAs levels and subtypes of stroke is not well studied. Therefore, the association of genetically proxied circulating BCAA levels with the risks of stroke and its subtypes was explored by Mendelian randomization (MR) in this study. Methods: Summary-level data derived from the published genome-wide association studies (GWAS) were employed for analyses. Data for plasma BCAA levels (n = 16,596) were obtained from a meta-analysis of GWAS. The MEGASTROKE consortium provided data for ischemic stroke (n = 440,328) and its subtypes and data for hemorrhagic stroke were available from 2 meta-analyses of GWAS of European-ancestry groups (intracerebral hemorrhage, n = 3,026; subarachnoid hemorrhage, n = 77,074). The inverse variance weighted (IVW) method was selected as the primary MR analysis. Supplementary analysis used included the weighted median, MR-Egger regression, Cochran's Q statistic, MR Pleiotropy Residual Sum and Outlier global test, and leave-one-out analysis method. Results: According to IVW analysis, 1-SD increment in genetically determined circulating isoleucine was associated with increased risks of cardioembolic stroke (CES) (OR: 1.56, 95% CI: 1.21-2.20, P = 0.0007), but not with risks of other stroke subtypes. We could not discover any proof that leucine and valine levels could increase risk of any stroke subtype. All heterogeneity tests produced stable findings, and there was no concrete evidence to indicate the perturbation of horizontal multiplicity. Conclusion: Increasing plasma isoleucine level had a causal effect on the risk of CES but not on the risk of other stroke subtypes. Further research is needed to identify the mechanisms of the causal associations between BCAAs and stroke subtypes.

4.
J Cereb Blood Flow Metab ; 43(2): 319-321, 2023 02.
Article in English | MEDLINE | ID: mdl-36127836

ABSTRACT

Selective brain cooling is a promising technique for improving outcomes in ischemic stroke in the area of reperfusion. A recent study described the efficacy of a new method of selective brain cooling via active conductive head cooling. This is a major step forward in the administration of hypothermic treatment during pre-hospital transfer. However, to enhance the benefits of selective therapeutic cooling, a more comprehensive strategy preventing delay in hypothermic induction and increasing the accuracy of selectivity in the brain should be considered to mitigate the side effects related to therapeutic hypothermia.


Subject(s)
First Aid , Hypothermia, Induced , Temperature , Brain/physiology , Hypothermia, Induced/methods , Body Temperature
5.
Neurotherapeutics ; 19(1): 386-398, 2022 01.
Article in English | MEDLINE | ID: mdl-35044645

ABSTRACT

The translational failure of neuroprotective therapies in stroke may be influenced by the mismatch of existing comorbidities between animal models and patients. Previous studies found that single-target neuroprotective agents reduced infarction in Sprague-Dawley but not in spontaneously hypertensive rats. It is of great interest to explore whether multi-target neuroprotectants and stroke models with comorbidities should be used in further translational researches. Ischemic stroke was induced in normotensive or hypertensive rats by 90- or 120-min middle cerebral artery occlusion (MCAO) and reperfusion. Intra-Arterial Selective Cooling Infusion (IA-SCI) was started at the onset of reperfusion for 30 minutes. Acute neurological deficits, infarct volumes, gene expression and markers of A1-like and A2-like astrocytes were evaluated. In further analysis, TNFα and IL-1α were administrated intracerebroventricularly, phenotype shifting of astrocytes and infarct volumes were assessed. Normobaric oxygen treatment, as a negative control, was also assessed in hypertensive rats. IA-SCI led to similar benefits in normotensive rats with 120-min MCAO and hypertensive rats with both 90-min and 120-min MCAO, including mitigated functional deficit and reduced infarct volumes. IA-SCI shifted astrocyte phenotypes partly by downregulating A1-like astrocytes and upregulating A2-like astrocytes in both RNA and protein levels. Upregulated A1-type astrocyte markers levels, induced by intracerebroventricular injection of TNFα and IL-1α, were closely related to increased infarct volumes in hypertensive rats, despite receiving IA-SCI treatment. In addition, infarct volumes and A1/A2-like genes were not affected by normobaric oxygen treatment. IA-SCI reduced infarction in both normotensive and hypertensive rats. Our results demonstrated the neuroprotective effects of IA-SCI in hypertensive rats may be related with phenotype shifting of astrocytes.


Subject(s)
Hypertension , Ischemic Stroke , Neuroprotective Agents , Stroke , Animals , Astrocytes/metabolism , Disease Models, Animal , Humans , Hypertension/complications , Hypertension/therapy , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/therapy , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Oxygen/pharmacology , Phenotype , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Stroke/therapy , Tumor Necrosis Factor-alpha/metabolism
6.
Hereditas ; 157(1): 16, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32340630

ABSTRACT

BACKGROUND: The methylenetetrahydrofolate reductase (MTHFR) rs1801131 A/C variant results in a decrease in MTHFR enzymatic activity, which may play an important role in folate metabolism and is also an important source of DNA methylation and DNA synthesis. Several case-control studies have been conducted to assess the association of MTHFR rs1801131 polymorphism with the risk of urinary cancers, yet with conflicting conclusions. To derive a more precise estimation of above relationship, the association between the MTHFR rs1801131 A/C polymorphism and the risk of urinary cancer was performed. METHODS: A total of 28 case-control studies was identified. The odds ratios (OR) with 95% confidence intervals (CI) was calculated to assess. RESULTS: On one hand, we found that the MTHFR rs1801131 A/C polymorphism was associated with increased whole urinary cancers' risk (for example CA vs. AA: OR = 1.12. 95%CI = 1.01-1.24). On the other hand, we found that the MTHFR rs1801131 A/C polymorphism might increase bladder cancer risk both in Asian (C-allele vs. A-allele: OR = 1.35. 95%CI = 1.15-1.60) and African populations (CA vs. AA: OR = 1.63. 95%CI = 1.17-2.25). CONCLUSIONS: Our current analysis suggested that MTHFR rs1801131 A/C is associated with urinary cancers, especially bladder cancer.


Subject(s)
Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Polymorphism, Single Nucleotide , Urinary Bladder Neoplasms/genetics , Case-Control Studies , Humans , Urologic Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...